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Interest in the vibrational motion of molecules is 
pervasive in chemistry. Our view of this motion is based 
on the Born-Oppenheimer approximation which sepa- 
rates the motion of the electrons from that of the nuclei. 
The electronic motion produces an effective potential 
which holds molecules together and governs their vi- 
brational motion. The complexity of this potential gives 
rise to the richness of much of chemistry. Thus, a 
theoretical picture of the vibrations of molecules is at 
the heart of many chemical questions. 

The traditional view of vibrational motion is based 
on an harmonic approximation to the full nuclear po- 
tential. This very simple approximation gives rise to 
an extraordinarily simple and useful picture of vibra- 
tional motion, namely, that of independent vibrational 
modes, termed normal m0des.l The vibration of each 
of these modes is governed by a simple one-dimensional 
harmonic potential. The utility and popularity of the 
normal-mode-harmonic-oscillator (NMHO) model de- 
rives from its power and the ease with which a normal 
mode analysis can be carried out. Because the theory 
is based on an harmonic potential the wave functions, 
energies, etc. are all known analytically. Thus the 
theory gives analytical expressions for many important 
quantities, such as infrared transition frequencies and 
selection rules,2 partition  function^,^ and through them 
many important thermodynamic properties. In addi- 
tion to its pervasive use in IR spectroscopy, the NMHO 
model has been used extensively in the theory of vi- 
brations of solids4 and solid  surface^,^ polymers,6 and 
 protein^.^ The model also plays a key role in the 
transition-state theory of activated rate processes.8 

As with all approximate theories, the NMHO model 
has its limitations, some of which are quite serious. For 
example, consider breaking a bond. This simple but 
important process cannot be described by this model. 
First, an harmonic potential cannot lead to dissociation. 
Second, and more serious, bond breaking cannot be 
described by the motion of a single normal mode. If 
one examines the normal modes of vibration of a 
molecule with three or more atoms, one sees that none 
will describe the motion of a single bond. Rather, they 
describe the collective (and frequently beautiful) motion 
of all of the atoms in the molecule. Thus, exciting a 
single normal mode cannot result in a simple bond 
breaking without the participation, via coupling, of 
other normal modes. 
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The eventual breakdown of the NMHO model is ex- 
pected on general theoretical grounds simply because 
the harmonic approximation to the potential will 
eventually break down. When that happens, two very 
striking changes occur in the vibrational motion. First, 
the harmonic model for the normal modes deteriorates. 
Second, and more significant, there is a coupling among 
the normal modes. This coupling is very important for 
processes in chemistry which are only recently being 
studied by high-power lasers, for example. One now has 
the ability to pump large amounts of energy into a 
molecule and then probe a chemical change. One very 
beautiful example of this type of experiment is work by 
the Crim group in which high overtones of OH are ex- 
cited in Hz02 followed by 0-0 bond rupture giving two 
OH  radical^.^ Thus, much of the energy initially de- 
posited in the OH bond finds its way into the weaker 
0-0 bond. Clearly, this process requires substantial 
coupling among the normal modes of vibration of HzOz. 
Indeed the general area of mode-specific chemistry, of 
which the above experiment is just one example, is 
currently faced with a prima facie breakdown of the 
NMHO model. There is currently a very intensive 
theoretical effort to explore the consequences of the 
breakdown of the NMHO model and to find something 
to replace it with. Our efforts have focused on a method 
which satisfies the following criteria. It should be 
general, accurate, and readily applicable to large sys- 
tems. Traditional methods to go beyond the NMHO 
model are based on second order perturbation theory 
and standard configuration interaction methods.1° 
Neither of these methods satisfy all of the above 
criteria. 

In this Account we review a new theory1&14 which 
deals with the full potential instead of approximating 

'Address after Sept. 1986: Department of Chemistry, Emory Univ- 
ersity, Atlanta, GA 30322. 

(1) Wilson, E. B., Jr.; Decius, J. C., Cross, P. C. Molecular Vibrations; 
McGraw-Hill: New York, 1955. 

(2) Herzberg, G. Infrared and Raman Spectra; Van Nostrand Rein- 
hold New York, 1945. 

(3) McQuarrie, D. A. Statistical Thermodynamics; Harper and Row: 
New York, 1973. 

(4) Maradudin, A. A.; Montroll, E. W.; Weiss, G. H.; Ipatova, I. P. 
Theory of Lattice Dynamics in the Harmonic Approximation, 2nd ed.; 
Academic: New York, 1971. 

(5) Benedek, G. In Dynamics of Gas-Surface Interaction; Benedek, 
G., Valbusa, U., Eds.; Springer-Verlag: Berlin, 1982. 

(6) Painter, P. C.; Coleman, M. M.; Koenig, J. L. The Theory of Vi- 
brational Spectroscopy and its Application to Polymeric Materials; 
Wiley: New York, 1982. 

(7) McCammon, J. A.; Karplus, M. Acc. Chem. Res. 1983, 16, 187. 
(8) Johnston, H. S. Gas Phase Reaction Rate Theory; Ronald: New 

(9) Dubal, H.-R.; Crim, F. F. J .  Chem. Phys. 1985, 83, 3863. 
(10) Carney, G. C.; Sprandel, L. L.; Kern, C. W. Adu. Chem. Phys. 

York, 1966. 

1978, 37, 305.- 
(11) Bowman, J. M. J .  Chem. Phys. 1978, 68, 608. 
(12) Bowman, J. M.: Christoffel, K. M.; Tobin, F. L. J .  Phys. Chem. 

1979, 83, 905. 
(13) Tobin, F. L.; Bowman, J. M. Chem. Phys. 1980, 47, 151. 
(14) Christoffel, K. M.; Bowman, J. M. Chem. Phys. Lett. 1982, 85, 

220. 

0 1986 American Chemical Society 



Vol. 19, 1986 Polyatomic Vibrations 203 

it by an harmonic potential. However, the vibrational 
wave function is approximated in a way that, in form, 
is exactly like the~one used in the NMHO model. The 
theory is termed the Vibrational self-consistent-field 
theory (VSCF) because, as we shall show, it is com- 
pletely analogous to the self-consistent-field theory used 
extensively in electronic structure calculations. In the 
next section we review this theory and then present 
several examples and conclude with some remarks 
about its future uses. 

The Vibrational Self-Consistent-Field Theory 
The basic idea underlying the VSCF approach is very 

simple. For concreteness consider a three-mode system 
(e.g., a nonlinear triatomic molecule) and let the vi- 
brational wave function for a quantum state Il,m,n) be 
represented as a simple product function 

*l,m,n(QliQ~,Q3) = ~ L Q I ) ~ ~ ( Q z ) ~ J ~ ( Q ~ )  (1) 

where Q1, Qz, and Q3 are the three normal coordinates. 
This form for the vibrational wave function is the same 
as the one in the NMHO model. Also, note that normal 
coordinates are a well-defined set of coordinates even 
when the NMHO model breaks down. Now, we seek 
the variationally best form of the modal wave functions 
41(Q1), 4m(Q2), and $,(Q3). This is achieved by requiring 
that the expectation value of the full hamiltonian H, 

respect to small variation in each of the modals subject 
to the constraint that each modal be normalized. This 
approach is exactly analogous to the Hartree theory of 
electronic structure.15 In electronic structure theory 
it is necessary to antisymmetrize the wave function and 
the resulting theory is termed Hartree-Fock theory. In 
the vibrational problem antisymmetrization is not 
necessary because the vibrational modes are distin- 
guishable. 

( *l,m,n (Q1, Qz, Q3) IHI *l,m,n (Q1, QZ Q3) ) be stationary with 

To proceed we express H as 
H = hi + hz + h3 + V&Qi,Qz,Q3) (2) 

where hi is a single-mode hamiltonian. For example, 
h; = Ti + Vi(Qj), i = 1-3 (3) 

where Ti is the kinetic energy operator of the ith mode 
and Vi(Qi) is the single mode part of the full potential 
V(QilQ2,Q3). Thus, 
V(Qi,&2,QJ = Vi(Qi)+ V2(Q2)+ V3(Q3)+ Vc(Qi,Q2,QJ 

(4) 

and therefore Vc is the part of V which explicitly in- 
volves coupling among the modes. From the variational 
procedure mentioned above, the equations which the 
modals satisfy are 
[hi + (4m$nlVc(Qli&2,&3)l4m4n) - ~ ~ I ( Q J  = 0 ( 5 4  

thz + (4l~,lvc(Ql,Q2,&3)14l4,) - tml4m(QZ) = 0 

[h3 + (4.ldmlVc(Ql,Q2,&3>1$l4m) - tnld~n(Q3) = 0 

(5b) 

( 5 ~ )  

The matrix element Vc(Q1,Q2,Q3) means 
that the integration is done over the two coordinates 
Q2 and Q3 and the quantity which results after inte- 
gration is only a function of Q1. Thus, it is useful to 
define effective potentials as follows: 

Vlm(Q3) = V3(Q3) + ( 4 l $ m l V c ( Q l , Q ~ , Q 3 ) I ~ l 4 m )  ( 6 ~ )  

These potentials depend explicitly on only one modal 
coordinate Qi, and they consist of the “diagonal part” 
of the potential V(Ql,Q2,Q3) plus the coupling potential 
averaged over the modal wave functions of the re- 
maining modes. In terms of these effective potentials, 
eq 5 can be rewritten as 

[TI + Vmn(Q1) - ELI$I(QJ = 0 

[Tz + Vln(Q2) - ~ m l $ m ( Q J  = 0 

[7’3 + Vlm(Q3) - ~ n l 4 n ( Q 3 )  = 0 

(7a) 

(7b) 

(7c) 

These appear to be simple one-dimensional eigenva- 
lue equations with energy eigenvalues el, em, and E,. 

However, they are coupled because the effective po- 
tential for any one of them depends on the modal ei- 
genfunctions of the other eigenvalue equations. A very 
convenient way to solve them is by an iterative proce- 
dure until self-consistency is achieved. In practice a 
zero-order set of modal wave functions, 4/’(Q1), #J,~(Q~), 
and 4,0(Q3), are used to evaluate the effective potentials 
in eq 7. The eigenvalue equations are then solved, from 
which new modal eigenfunctions and eigenvalues are 
obtained. These modal eigenfunctions are then used 
to calculate new effective potentials which are then used 
to obtain new modal eigenfunctions and eigenvalues. 
The process continues until convergence is achieved, 
that is, when the modal wave functions used to obtain 
the effective potentials are the same as the ones cal- 
culated by solving the eigenvalue equations using those 
potentials. Thus, convergence is achieved when the 
iteration process becomes self-consistent and hence the 
name “self-consistent field” derives from the method 
used to solve the coupled equations, 7. In practice, the 
convergence criterion is that the eigenvalues EL, E, and 
e, do not change upon further iteration. Typically ten 
or so iterations are needed to achieve relative conver- 
gence of the eigenvalues to IO4. 

In general, the zero-order modal wave functions are 
eigenfunctions of the hamiltonians h, or the normal- 
mode-harmonic-oscillator wave functions. In the 
present context these are just the eigenfunctions of h, 
with an harmonic approximation to the potentials 
V,(Q,). We have ~ o l v e d l l - ~ ~  the eigenvalue equations 
numerically by using standard techniques such as the 
Finite-Difference-Boundary-Value method16 and the 
Cooley-Numerov method.17 Another approach which 
we currently use18 is to expand the modals in a con- 
venient basis, e.g., for the first mode 

where the xj(Q1) are the normal mode eigenfunctions. 
Another choice we have frequently made is to use the 
anharmonic basis defined as the eigenfunctions of hi. 
This basis is not analytically known in general and so 
each member of that basis is itself typically expanded 
in terms of an harmonic basis. 
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In any case, expanding h(Q1), dm(Q2) and 4n(Q3) in 
bases results in a set of coupled algebraic equations for 
the expansion coefficients in exact analogy with the 
Roothan implementation of the Hartree-Fock theory 
of electronic structure.19 The basis set approach is 
favored especially when the coupling potential is rep- 
resented as a multidimensional polynomial, in which 
case the matrix elements in eq 6 can be done analyti- 
cally. 

Finally, the energy of the VSCF state $l(Q1) X 
(Pm(Q2)d~n(Q3) is 

El,m,n = ( (P1 (Q1)$m(Q2)4n (Q3) I~ I$~ (Q~)4m(Q2) (Pn(Q3)  ) 

= € 1  + E ,  + E n  - 

We have written and submitted to the Quantum 
Chemistry Program Exchange a general code, called 
“POLYMODE”, which calculates VSCF energies and 
wave functions for molecules as large as pentaatomics.20 
This code is available to the general community. 

Beyond the VSCF Theory 
The eigenvalue equations, eq 7, define the varia- 

tionally best modals 41(Q1), 4,(&2), and 4,,(Q3) for the 
quantum state lZ,m,n), In addition to these modal wave 
functions they yield a complete set of “virtual” modals 
for each mode, that is, other modal wave functions 
which are labeled by quantum numbers which differ 
from 1, m, and n. These virtual modals can be used as 
an expansion basis to perform a “configuration-inter- 
action (CI)” calculation which, if converged, yields the 
exact vibrational eigenvalues and eigenfunctions of the 
full hamiltonian. We term this approach the VSCF-CI 
method.12-14*21 Alternatively, one could do perturbation 
theory assuming that the VSCF wave function is the 
zero-order function. Both of these approaches are 
analogous to methods developed in electronic structure 
theory. Also, in analogy with a method from that field,= 
a multiconfiguration (vibrational) self-consistent-field 
theory has been suggested.13 Such a theory may be 
useful if there are two (or more) VSCF configurations 
with nearly equal energies. Thus, the VSCF theory can 
be used as a launching point for techniques which are, 
in principle, exact. 

A Word about Semiclassical VSCF Theory 
A very interesting modification of the VSCF method 

just described is its semiclassical limit, as developed 
initially by Ratner, Gerber, and c o - ~ o r k e r s . ~ ~  They 
noted that because the quantum VSCF eigenvalue 
equations are one-dimensional, their semiclassical so- 
lution would simply be the well-known semiclassical 
quantization method for one-dimensional systems. The 
extension they had to make was to derive a semiclassical 
expression for the effective potentials. This was done 
by using “primitive” semiclassical wave functions. Then 

(9) 

2 (@l(Ql)$m(Q2)$n(&3)1 v,l$l(Ql)$m(Q2)$,(Q3) ) (10) 
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the eigenvalue equations, 7, are solved during each it- 
eration by applying the semiclassical quantization 
condition 

(11) 

to each mode, where Pi is the classical momentum and 
the integral is over a complete classical orbit. The en- 
ergy of the ith mode is then adjusted so that the ni are 
the desired integers corresponding to the quantum 
state. There are applications where the primitive sem- 
iclassical wave functions are inadequate, as Farrelly et 
al.24 and F a r r e l l ~ ~ ~  have recently pointed out. Farrelly 
has extended the semiclassical VSCF method to use 
more accurate semiclassical wave functions in these 
cases. 

Before going on to discuss several examples where the 
VSCF theory has been applied, we should make some 
general comments on its generality and limitations. 
First, to its generality-the method does not depend on 
the choice of coordinates used to describe the vibra- 
tional motion. The use of normal coordinates in the 
above example was chosen for convenience in describing 
the method. Indeed it was clear from the outset that 
an optimum choice of coordinates would be one in 
which the VSCF method produces the lowest energy for 
a given state. (This second type of optimization has 
been explored in a limited Also, we have said 
very little about the nature of the coupling potential V,. 
In fact, it too can be completely general, although most 
applications have used very simple multinomial ex- 
pressions. Finally, the theory is capable of dealing with 
a large number of coupled modes in a computationally 
feasible manner. This is because the number of coupled 
eigenvalue equations to solve grows linearly with the 
number of modes in contrast to CI methods which grow 
exponentially with the number of modes. 

Now to its limitations. Obviously, the exact vibra- 
tional wave function cannot be written as a simple 
product function. This is especially evident when there 
are two VSCF states (of the same symmetry) which are 
nearly energetically degenerate. These states can be 
expected to mix strongly. Nevertheless, it may turn out 
that simply allowing just those states to mix will pro- 
duce a very accurate result. (We shall see an example 
of this later.) Another example where mixing is in- 
herently important is for vibrational states which are 
metastable, that is, states which have energy above the 
energy needed to fragment the molecule, i.e., to break 
bonds. Even in “zero-order’’ two wave functions are 
needed to describe this situation, one to characterize 
the quasibound state and another to describe the con- 
tinuum state. As noted above, mixing of VSCF states 
has been done in several studies (some are described 
in the next section), and so it is quite feasible to de- 
scribe those processes which mandate mixing. 

Application to the Water Molecule 
In the first application we wish to answer the ques- 

tion, how well does the VSCF method work? To answer 

l P i d Q i  = (ni + 1/2)h 

(24) Farrelly, D.; Hedges, R. M.; Reinhardt, W. P. Chem. Phys. Lett. 
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Figure 1. The error in normal-mode-harmonic-oscillator 
(NMHO) and vibrational self-consistent-field (VSCF) energies, 
AE, vs. the energy for three-mode HzO. 

this question we will consider a realistic model for 
nonrotating three-mode water. We used a fit to high- 
quality ab initio quantum mechanical calculations by 
Bartlett et al. of the electronic energy.29 This fit is an 
18-term fourth-order multinomial expansion in terms 
of the three normal coordinates, Q1 (the symmetric 
stretch), Q2 (the asymmetric stretch), and Q3 (the bend), 

We are not concerned here with any aspect of this fit; 
for the present purpose it provides a realistic potential 
in which to carry out a test of the VSCF method. The 
“exact” eigenvalues for the same potential were ob- 
tained by mixing a reference VSCF state with a large 
virtual-state basis. As a standard against which to 
measure the accuracy of the VSCF theory, we also 
calculated the energies from the NMHO model. 
Twenty-nine states of energies up to 13000 cm-’ above 
the zero-point energy (4683 cm-’) were calculated. 

In Figure 1 we plot the error in the NMHO and 
VSCF energies vs. the total energy. A t  a glance, we can 
see that the VSCF energies are much more accurate 
than the harmonic ones. Closer examination also re- 
veals that the error in the NMHO energies is growing 
much more rapidly with energy than the error in the 
VSCF energies. Some statistics: the average error in 
the harmonic energies is 538 cm-’ whereas for the VSCF 
energies it is 117 cm-’. These average absolute errors 
translate into average relative errors of 6.4% for the 
harmonic oscillator energies and 1.3% for the VSCF 
energies. Thus, if we consider the difference betwen 
the NMHO and exact energies as the standard, we see 
that the VSCF method recovers 80% of the error on the 
average. The remaining 20% is due to correlation be- 
tween the vibrational modes. This correlation can only 
be recovered by doing some mixing of the VSCF and 
virtual states. For this example then, we conclude that 
the VSCF method indeed works well. 

There are some relatively large isolated errors in the 
VSCF energies. These are shown very clearly as spikes 
in Figure 1. These larger errors occur for states in 

(29) Bartlett, R. J.; Shavitt, I.; Purvis, G .  D., I11 J .  Chem. Phys. 1978, 
71, 281. 

which there is considerable excitation in all of the 
modes. For example, the spikes a t  10316,11130, and 
12487 cm-l occur for the states 11,2,1), 12,0,1), and 
12,1,1), where the first, second, and third integer indi- 
cates the number of quanta in the symmetric, bending, 
and asymmetric normal modes. (These state labels are, 
of course, approximate as the exact states are mixed.) 
For these states there is substantial mixing between the 
VSCF states. A very important question then is how 
much mixing of the VSCF states is necessary to achieve 
a much more accurate result? 

This question was addressed in several studies12J3 and 
in a very interesting study by Thompson and T r u h h 2 ’  
They considered a two-mode model for CO, in which 
there is a famous 2:l Fermi resonance between two 
quanta of excitation of the bend mode with one quanta 
of excitation of the asymmetric stretch mode. They 
explicitly considered these two modes and showed that 
the VSCF energies of these states were split by only 
20% of the exact result. However, by mixing just these 
two VSCF states, they obtained a splitting equal to 99% 
of the exact result. Comparable results were also found 
for other excited Fermi-resonant states. This important 
study demonstrated that with a minimum amount of 
mixing the VSCF theory could account for much of the 
mixing due to Fermi resonances. 

Formaldehyde 
The next example we wish to consider is form- 

aldehyde, H2C0. This is a six-mode system and rep- 
resents the l i i i t  of what can be done with CI variational 
methods. However, it is not a particularly difficult 
system to study with the VSCF method. We carried 
out an extensive study of 66 vibrational states of H2C0 
and 21 vibrational states of DzCO using the VSCF and 
the VSCF-CI methods. These calculations were based 
on ab initio potential calculated by Harding and fit to 
a 37-term quartic force field.30 (The form of the po- 
tential is like the one in eq 12 but for six modes.) The 
objective in that study was to see how well the “exact” 
VSCF-CI vibrational energies compared with experi- 
ment for many transitions. The findings were most 
satisfying: For the 30 transitions reported experimen- 
tally the calculated energies differed on the average by 
only 11 cm-l. We do not wish to review this study in 
any detail, rather we wish to point out some of the 
results of the VSCF calculations and again to contrast 
the accuracy of this method with those from the NMHO 
model. In addition, we also consider the uncoupled 
normal mode anharmonic oscillator model. In this 
model there is still no coupling between the normal 
modes; however, the full diagonal part of the potential 
(the Vi(Qi)) is used. We call this model the uncou- 
pled-anharmonic-oscillator (UAO) model. The energies 
based on this model, the NMHO model, the VSCF ones, 
and the “exact” VSCF-CI energies are given in Table 
I for a number of states, which are labeled by the 
quantum numbers of the six modes of vibration and the 
symmetry of each state (H2C0 and DzCO belong to the 
C,, point group). The notation v1u2u3v4v&, indicates the 
number of quanta in each of the six normal modes 
which can be approximately characterized according to 
the following: ul, CH symmetric stretch; u2, CO stretch; 

(30) Romanowski, H.; Bowman, J. M.; Harding, L. B. J.  Chem. Phys. 
82, 4155 (1985). 
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Table I. 
Vibrational Energies of HzCO (in cm-') from the 
Normal-Mode-Harmonic-Oscillator (NMHO), 

Uncoupled-Anharmonic-Oscillator (UAO), Vibrational 
Self-Consietent-Field (VSCF), and Converged "Exact" 

(VSCF-CI) Methods 
state svm NMHO UAO VSCF VSCF-CI 

000000 A, 5864 5880 5796 5777 
1Ooooo 
010000 
001000 
000100 
000010 
000001 
200000 
110000 
101000 
100100 
100010 
100001 
020000 
011000 
010100 
010010 
010001 

8802 
7642 
7408 
7053 
8876 
7134 

11739 
10580 
10346 
9990 

11814 
10071 
9420 
9186 
8831 

10654 
8912 

8756 
7644 
7424 
7085 
8960 
7162 

11581 
10520 
10301 
996 1 

11836 
9842 
9395 
9188 
8849 

10724 
8925 

8610 
7546 
7303 
6948 
8640 
7045 

11371 
10358 
10082 
9716 

11460 
9825 
9282 
9050 
8690 

10386 
8790 

8559 
7524 
7277 
6938 
8635 
7023 

11275 
10307 
10048 
9692 

11367 
9784 
9256 
9017 
8676 

10362 
8781 

v3, CH2 in-plane bend; u4, umbrella motion; v5, CH 
asymmetric stretch; v6, in-plane rock. 

As seen in Table I the VSCF energies are substan- 
tially more accurate than NMHO and the UAO ones. 
Thus, as in the case of H20, the VSCF energies are 
quite accurate. And as in that case the uncoupled 
picture is really quite inaccurate even for the funda- 
mental transitions. Some statistics: the average error 
of the NMHO energies is 223 cm-l, for the UAO ener- 
gies it is 209 cm-' whereas it is only 33 cm-' for the 
VSCF energies. Thus in this example, the UAO model 
is really not a substantial improvement over the NMHO 
one. Again, if we consider the error between the 
NMHO energies and the exact ones as the standard, 
then the VSCF method recovers 85% of that error. 
Recall that for H 2 0  80% of that error was recovered. 
The VSCF method did slightly better for the six-mode 
formaldehyde than for the three-mode water! So, based 
on these two realistic examples along with many model 

we feel it is safe to say that the VSCF 
method works quite well and that it is substantially 
more accurate than the NMHO model. 

Let's now consider several effective potentials for a 
state of HzCO in which the u3 and v5 modes have one 
quanta of excitation and the other modes are unexcited. 
These potentials and the one for mode u1 are shown in 
Figures 2-4 for these modes. Also, we have plotted the 
UAO potentials for these modes, i.e., Vl(Ql), V2(Q2), and 
V3(Q3). (The normal mode harmonic potentials are just 
the harmonic approximation to the UAO potentials 
shown.) The coordinates are the normal mode dis- 
placements from equilibrium of the bare potential. It 
turns out for symmetry reasons that the effective po- 
tential for mode 5 must be symmetric about the origin, 
and so the difference between the effective and UAO 
potentials for that mode appears to be small. However, 
for modes 1 and 3 there is no such symmetry restriction, 
and there are substantial differences between the VSCF 
effective potentials and the UAO ones. 

A Model Two-Mode Isomerization Reaction 
In the final example we consider the effect of the rate 

of isomerization due to excitation of an harmonic mode, 

-1 0.00 -5.00 5.00 10.00 

Figure 2. Uncoupled anharmonic (dashed curve) and vibrational 
self-consistent-field (solid curve) effective potentials for mode 1 
of H&O. 

-10.00 -5.00 5.00 10.00 g)  
Figure 3. Same as Figure 2 but for mode 3. 

which is coupled to the isomerization mode.31 
potential is given by 

The 

(13) V(X,Y) = Vdwb) + mw2(x)y2/2 

where 
vdw(x) = ax2 /2  + b x 4 / 2  + Vo exp(-cx2) (14) 

and 

w ( x )  = w o ( l  - exp(-gx2)) (15) 

(The parameter values are given in reference 31). This 
potential represents a simple physical picture. The 
potential, Vd,(x), is a symmetric double well (the two 
stable minima represent the two isomers) which is 
coupled to an harmonic potential in the y degree of 
freedom. The coupling between these modes is due to 
the variation of the harmonic frequency along the re- 
action coordinate, x .  The form of the function w ( x )  
causes a minimum in the harmonic frequency at the 
barrier to isomerization. This is a reasonable change 
of a frequency along a reaction coordinate. The interest 
here is to examine the rate of isomerization as a func- 
tion of the degree of excitation of the y-mode. Thus, 

(31) Christoffel, K. M.; Bowman, J. M. J. Chem. Phys. 1981, 74, 5057. 
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I 
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Figure 4. Same as Figure 2 but for mode 5. 

Table I1 
Energy Splitting8 (in cm-') for the Coupled Two-Mode 

Double Well 

0 0.95 0.95 44.2 44.4 
1 1.26 1.28 67.6 68.9 
2 1.73 1.77 109.0 112.2 
3 2.45 2.55 181.9 187.7 
4 3.66 3.88 296.9 304.0 
5 5.95 6.52 448.2 455.0 

we are simulating an experiment in which a chemical 
reaction, in this case an isomerization, is induced by 
pumping a mode coupled to the reaction coordinate. In 
this case it is easy to determine this effect directly from 
the stationary states of the coupled two-mode system. 
It is well-known that the rate of a symmetric isomeri- 
zation is given by32 

k = A / r h  (16) 
where A is the splitting between pairs of symmetric and 
asymmetric bound states. Here we will consider the 
splitting between the energetically lowest and first ex- 
cited pairs of symmetric and asymmetric bound states. 
Thus it is necessary to determine the dependence of this 
splitting on excitation of the harmonic mode. Clearly, 
to determine this effect the coupling between the x and 
y modes must be explicitly considered, and thus the 
NMHO and UAO models are useless for this purpose. 
We applied the VSCF method to this problem along 
with the VSCF-CI method, which was used to obtain 
converged "exact" results. For this two-mode problem 
we could carry out converged CI calculations. The re- 
sults are summarized in the Table 11. As seen in the 
VSCF results are in very good agreement with the CI 
results for both sets of splittings. 

The splitting and hence the isomerization rate in- 
creases as the harmonic mode is excited, not surpris- 
ingly. This means physically that some of the energy 
deposited into the harmonic mode is made available, 
through coupling, to the reaction coordinate and thus 
aids in overcoming the barrier to isomerization. The 
splitting between the second pair of symmetric and 
asymmetric bound states is greater than for the first 
pair. This is due simply to the fact that the barrier to 

(32) See, for example: Tomes, C. H.; Schalow, A. L.; Microwaue 
Spectroscopy; McGraw-Hill: New York, 1955; Chapter 12. 

i 
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Figure 5. Effective potentials for the reaction coordinate of the 
coupled double well for the indicated levels of excitation of the 
harmonic mode transverse to the reaction coordinate. 

isomerization for excited states is less than it is for the 
lower energy states, as it should be. 

We now wish to examine several VSCF effective po- 
tentials. These can be used to help understand the 
result that excitation of the harmonic mode does indeed 
promote the isomerization. Recall that the effective 
potential for the x-motion is given by 
v d w ( x ) + ( ~ , y l v c ( x , Y ) l ~ " y )  where hYb) is the VSCF 
wave function for the harmonic mode and the coupling 
potential V,(x,y) equals m[co2(x) - w2(x = O)]y2/2. The 
wave function for the y-mode depends of course on the 
degree of excitation of the x-mode and thus there really 
is a different effective potential for each pair of quan- 
tum numbers ny, n,. Four effective potentials for n, 
equals zero, i.e., no excitation in the x-mode, are plotted 
in Figure 5. As seen excitation of the harmonic y-mode 
produces some dramatic effects on the effective po- 
tential. First, the barrier to isomerization decreases, 
and in fact the single barrier, which is present for ny 
= 0, splits into two barriers with a "wedge" developing 
as ny increases. Thus, the effect of the coupling of the 
x and y modes not only lowers the barrier to isomeri- 
zation, it produces a major change in the character of 
the potential. This change is due to the fact that the 
frequency of the harmonic mode decreases as x ap- 
proaches 0. This decrease is quite localized around x 
= 0 and appears as a net decrease in the effective x- 
potential. In fact, for ny greater than 7 the wedge that 
is created in the effective potential is so great that a new 
bound state is formed exactly where there existed a 
barrier when ny equals zero! 

This final example is one in which coupling is an 
essential aspect of the dynamics. Thus, it demonstrates 
the inherent power of the VSCF method over the 
NMHO one. 
The Future 

We anticipate that the VSCF method will be rou- 
tinely applied to polyatomic systems in conjunction 
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with electronic structure calculations to determine ac- useful. The question of coordinate system optimization 
curate IR transition energies for fundamental transi- which was just briefly mentioned looks also to be a 
tions. The method should also prove useful in studying promising area of future theoretical research. 
large amplitude motion in large systems such as pro- 
teins or van der Waals clusters. For problems in which 
coupling of modes plays a major role, such as laser-in- 
duced isomerization, the method should be especially 
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